
Abstract Objective. This study examines the effects of
agents purported to improve recovery following spinal
cord trauma, methylprednisolone sodium succinate, dex-
tromethorphan, and the combination of both, on the post-
traumatic alterations of membrane lipid metabolism.
Methods. After sparing ten rats for a control group (G1)
and performing T3–T6 laminectomies in 150 rats, spinal
cord injuries were accomplished in 120 of 150 Wistar rats
with an aneurysmal clip compression at the level of T4-5
for 30 sec. Hence the G2 group (n 30) included the “only
laminectomy/sham” group. The 120 injured animals were
subdivided into four equal groups (n 30 each). Group G3
underwent no therapy, G4 methylprednisolone (MP), 
G5 dextromethorphan (DM), and G6 MP+DM therapies.
Groups G2–G6 were killed ten by ten at 10 min, 30 min,
and 120 min after the operation. We measured tissue
(MDA) and blood malonyldialdehyde (MDAb), (a 
product of lipid peroxidation) levels as an indicator of 
oxidative damage by thiobarbituric acid method and 
activity levels of antioxidant enzymes superoxide dismu-
tase and glutathione peroxidase in erythrocytes. Inter-
group and intragroup results were compared statistically.
Results. Methylprednisolone was able to keep the levels
for all parameters close to baseline except for 30-min
MDA, MDAb, and SOD values. But their results were all
different from those of G3. Dextromethorphan was suc-
cessful in this respect at 30-min GSH-Px and 120-min
SOD and GSH-Px, and all values were also different
from G3 values except for 10-min MDA, SOD, and
GSH-Px. Combined therapy was not able to keep levels

close to baseline for all parameters, but they were differ-
ent from G3’s except for the GSH-Px values. Methyl-
prednisolone values displayed minimal alterations ac-
cording to baseline at 120 min. Dextromethorphan was
relatively unsuccessful at 10 min. Combined therapy did
not show benefit superior to MP/DM single therapies.

Keywords Dextromethorphan · Malonyldialdehyde ·
Methylprednisolone · Lipid peroxidation · Spinal cord
injury

Introduction

Traumatic spinal cord injury (SCI) leads to serious bio-
chemical, pathological events that result in tissue necro-
sis and functional deficit. Among the earliest biochemi-
cal reactions are hydrolysis of fatty acids from mem-
brane phospholipids, production of biologically active
eicosanoids, and peroxidation of lipids with formation of
reactive oxygen species (ROS). These latter are the main
agents responsible for cellular damage [1]. Superoxide,
ferryl, and hydroxyl anions are the common reactive
compounds that cause lipid peroxidation [2]. Under nor-
mal conditions, superoxide (O2-) anions are generated
during mitochondrial electron transport. There is a bal-
ance between antioxidants and oxidants produced by 
aerobic cellular systems. One of the antioxidant defense
systems is superoxide dismutase (SOD) which eliminates
superoxides by converting them to hydrogen peroxide
(H2O2). H2O2 is reduced to water by cytosolic antioxi-
dants, catalase, and glutathione peroxidase (GSH-Px)
[3]. Products of lipid peroxidation, e.g., malonyldialde-
hyde (MDA) levels, together with SOD and GSH-Px 
activity levels, can be measured in monitoring the degree
of lipid peroxidation.

With the development of experimental spinal cord inju-
ry models and recent advances in spinal cord injury 
research, many treatment regimens such as receptor 
blockers, physiologic antagonists, inhibitors of biosynthet-
ic pathways, and membrane-stabilizing drugs have come
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into use with time. Still, there is no effective treatment to
remedy the detrimental effects of SCI. Methylpredniso-
lone has been found to be useful for its radical scaveng-
ing, antilipid peroxidation, and neuroprotective effects.
Also, NMDA antagonist drugs have recently gained much
credit in the treatment of SCI. But so far no combination
therapy of MP and NMDA antagonist drug has been tried
and published in the literature. Therefore we decided to
investigate the blocking effects of MP, DM (a dextrorota-
tory morphinan and NMDA antagonist), and their combi-
nation on lipid peroxidation and compared with each other
by the method of thiobarbituric acid reaction (TBA) with
MDA and by simultaneous measurement of levels of
erythrocyte SOD and GSH-Px, which are expected to be
consumed proportionally to the degree of peroxidation.

Material and methods

One hundred sixty male albino Wistar rats were included in the
prospective randomized study program. The rats, weighing
250–340 g, were handled according to “Principles of Laboratory
Animal Care” [4] and monitored in terms of blood pressure, heart
rate, and body temperature during the study. Induction anesthesia
with 3–4% halothane accompanied with a flow of about 1–2 l/min
of oxygen was given in a small induction chamber until the rats
remained immobile. Then a face mask was used to deliver 1–2%
halothane to maintain the anesthesia. The rats were divided into
six groups.

In group 1 (G1) (n 10), the control group, neither laminectomy
nor medication was performed. Spinal cord tissues were provided
by biopsy right after they were killed. The MDA values provided
the basal values for the other groups. Group G2 (n 30) was the on-
ly laminectomized/sham group; no medication. Group G3 (n 30)
received laminectomy and injury; no medication. Group G4 (n 30)
received laminectomy + injury + 30 mg/kg methylprednisolone
sodium succinate intraperitoneally (MP-Prednol-L, Mustafa Nev-
zat, Istanbul, Turkey). Group G5 (n 30) had laminectomy + injury
+ 30 mg/kg DM intraperitoneally (d-3-metoxy-N-methyl morphi-
nan hydrobromide monohydrate) (Sigma, Steinheim, Germany).
Group G6 (n 30) received laminectomy + injury + combined ther-
apy (MP and DM at the same doses).

In all animals of groups 2–6, the spinal cords were exposed
with T3–T6 total laminectomies. Spinal cord injuries (G3–G6) as
described by Rivlin and Tator [5] were accomplished by extradural
compression of the exposed spinal cords at the T4-5 level for
30 sec using a Yasargil aneurysmal clip (FE 760) with a closing
force of 180 g on the cord. Except in G2 and G3, medications were
performed at the time of injury. After removal of the clip, spinal
cords were provided at 10 min, 30 min, and 120 min after killing
the animals by decapitation. The cord samples were provided in 
1-cm lengths at the lesion level and stored at –20°C for assays for
MDA. Simultaneously, 3-ml blood samples were drawn into tubes
containing EDTA. The blood samples were processed and plasma
and serum samples were separated and assayed immediately.

Measurement of tissue MDA levels

Lipid peroxidation in injured spinal cord was estimated by the
thiobarbituric acid reaction method for MDA (MDA defined as
the product of lipid peroxidation) described by Ohkawa et al. [6]
to give a red species absorbing at 535 nm. The MDA results were
expressed as nmol/g wet tissue.

0.2 ml of 10% (weight/volume) tissue homogenate was added
to 0.2 ml of 8.1% sodium dodecyl sulfate and a 1:5 aqueous solu-
tion of thiobarbituric acid. The mixture was diluted to 4.0 ml with
distilled water heated in an oil bath at 95°C for 60 min. After cool-

ing with tap water, 1.0 ml of distilled water and 5.0 ml of a mix-
ture of N-butanol and pyridine (15:1 volume:volume) were added
and the mixture was shaken. After centrifugation at 4000 rpm for
10 min, the organic layer was taken and its absorbance at 532 nm
was measured spectrophotometrically. Tetramethoxy propane was
measured as an external standard, and the level of lipid peroxides
was expressed as nanomoles of MDA per gram wet weight [6, 7].

Measurement of blood MDA levels (MDAb)

Serum lipid peroxide levels were measured colorimetrically by the
thiobarbituric acid method, which was modified from the methods
of Satoh [8] and Yagi [9] as reported recently. MDA levels were
expressed as nanomoles per milliliter.

Measurement of erythrocyte SOD activity levels

The role of SOD is to accelerate the dismutation of the toxic su-
peroxide radical (02

-) produced during oxidative energy processes,
to hydrogen peroxide and molecular oxygen. This method em-
ploys xanthine and xanthine oxidase (XOD) to generate superox-
ide radicals which react with 2-(4-iodophenyl)-3-(4-nitrophenol)-
5-phenyltetrazolium chloride to form a red formazan dye. The
SOD activity is then measured by the degree of inhibition of this
reaction. This was accomplished with a RANSOD kit (Randox,
Crumlin, UK). Levels of hemoglobin were measured according to
the method of Drabkin [10]. Results were expressed as units per
gram of hemoglobin.

Measurement of GSH-Px activity levels

GSH-Px activity levels were measured using a RANSEL kit
(Randox) using the method of Paglia and Valentine [11] in which
GSH-Px activity is coupled with the oxidation of reduced nicoti-
namide adenine dinucleotide phosphate (NADPH) by glutathione
reductase. The oxidation of NADPH was followed spectrophoto-
metrically at 340 nm and at 37°C. The reaction mixture consisted
of 50 mM potassium phosphate buffer (pH 7), 1 mM EDTA,
1 mM NaN3, 0.2 mM NADPH, 1 mM glutathione and 1U/ml of
glutathione reductase. The absorbance at 340 nm was recorded for
5 min. The activity was calculated from the slope of the lines as
micromoles of NADPH oxidized per minute. Results were ex-
pressed as units/g hemoglobin (Hb).

Statistical analysis

SPSS 9.0 software was used in statistical calculations and graphics.
For intergroup comparison, Kruskal-Wallis variance analysis was
applied for six independent groups each consisting of ≤30 subjects.
In case the P value was <0.05, the groups were compared two by
two by Mann-Whitney U test (MWU). In order to prevent signifi-
cance inflation, P<0.02 was accepted as significant. Intragroup
comparison was made initially with Friedman variance analysis;
the P value was calculated as <0.05. Therefore Wilcoxon’s rank
test (WRT) was used for comparison two by two and to prevent
significance inflation, P<0.03 was accepted as significant. Results
were expressed as mean ± standard error of the mean (Table 1).

Results

Intergroup comparison was done. G1–G3, G1–G6,
G2–G3, G2–G6, and G3–G4 were differed from each
other for all parameters at all times (P<0.02, MWU).
G1–G4 30-min MDA, MDAb, and SOD values differed
(P=0.001, 0.002, and 0.00, respectively). For G1–G5, all
parameters were different except for 120-min SOD and
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30- and 120-min GSH-Px (P>0.02). For G2–G4, 30-min
MDA, MDAb, and SOD values were different (P=0.005,
0.002, and 0.001, respectively). For G2–G5, all were sig-
nificantly different (P<0.02) except for 120-min SOD
and 30- and 120-min GSH-Px values (P>0.02). For
G3–G5, all were different except for 10-min MDA,
SOD, and GSH-Px values (P=0.2, 0.3, and 0.06 respec-
tively). For G3–G6, only GSH-Px values were similar at
all times (P>0.02). For G4–G5, 10- and 120-min MDA
(P=0.00 and P=0.003) and MDAb (P=0.00 and
P=0.013), and 10-min SOD values (P=0.00) were differ-
ent. For G4–G6, 10- and 120-min MDA (P=0.001 and

P=0.00), MDAb (P=0.001 and P=0.00), SOD (P=0.001
for both) and 120-min GSH-Px (P=0.01) were signifi-
cantly different. For G5–G6, 10- and 120-min MDA
(P=0.003 and P=0.01), all SOD values (P<0.012) were
different from each other.

Intragroup comparison was performed. For G2, all val-
ues were similar to baseline (P>0.03, WRT). For G3, all
values were different from the baseline at all times
(P=0.005). For G4, 10-min MDA together with 120-min
MDA, MDAb, SOD, and GSH-Px were similar to baseline
levels (P>0.03). For G5 and G6, all were different from
the basal levels at all times (P<0.03) (Figs. 1, 2, 3, 4). 

Table 1 The mean tissue MDA levels (nmol/g wet tissue), blood
MDAb levels (nmol/ml) and SOD (U/gHb) and GSH-Px levels
(U/gHb) of each group were identified as below. Values are given

as mean ± SEM. Lam laminectomy, I injury, MP methylpredniso-
lone, DM dextromethorphan

Fig. 1 Basal (G1) and 10, 30, and 120 min tissue MDA levels for
each study group (G2–G6) represented by box plot graphic

Parameter G1 G2 G3 G4 G5 G6 
(control) (lam) (lam+I) (lam+I+MP) (lam+I+DM) (lam+I+MP+DM)

0 min MDA 35.4±0.59
MDAb 1.80±0.004
GSH-Px 6.80±0.24
SOD 2500±55.7

10 min MDA 36.2±0.57 47.8±0.8 37±0.57 46.6±0.68 42.6±0.8
MDAb 1.94±0.003 2.77±0.002 1.96±0.004 2.42±0.003 2.45±0.007
GSH-Px 6.76±0.25 4.69±0.21 6.14±0.21 5.36±0.24 5.52±0.21
SOD 2494±56.5 1707±52.5 2410±58.1 1763±43.9 2020±44.2

30 min MDA 36.1±0.60 45.7±0.44 39±0.57 39.90±0.45 42±0.93
MDAb 1.87±0.004 2.71±0.004 2.16±0.005 2.29±0.005 2.34±0.007
GSH-Px 6.77±0.25 4.88±0.20 5.95±0.19 6.20±.0.23 5.57±0.21
SOD 2487.5±59.3 1751±47.7 2085±55.8 2278±57.3 2045±45

120 min MDA 36.40±0.49 45.1±0.5 36.3±0.55 39.1±0.37 41.8±.71
MDAb 1.92±0.005 2.51±0.003 1.83±0.004 2.19±0.007 2.29±0.007
GSH-Px 6.72±0.25 5.01±0.2 6.75±0.25 6.39±0.23 5.8±0.20
SOD 2488±55.3 1829±55.1 2491±55.8 2350±53.2 2115±47.1

Fig. 2 Basal (G1) and 10, 30, and 120 min blood MDAb levels for
each study group (G2–G6) represented by box plot graphic
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Intragroup comparison revealed that laminectomy did not
alter the values, whereas the alterations were the greatest
with the injury group. Methylprednisolone was effective
in keeping the values close to baseline, particularly at
120 min. The DM and MP+DM values deviated from 
basal levels significantly. 

Discussion

Traumatic and ischemic injuries to the central nervous
system including the spinal cord cause tissue damage
through both direct (primary) and indirect (secondary)
mechanisms. Secondary injury is caused by the activa-
tion of endogenous substances. Acute inflammatory re-
sponse at the site of injury and spinal cord hemorrhage
with release of Fe and hemoproteins yield the production
of reactive oxygen species (ROS) and cytotoxic edema
which in turn contribute to lipid peroxidation and isch-
emia [12, 13, 14, 15, 16]. Neurogenic shock with the in-
crease of monoamines promotes ischemia which increas-
es the amount of extracellular glutamate [17, 18, 19, 20].
Glutamate activates an NMDA receptor which promotes
Ca ion influx (and Na). Also, voltage-gated Ca influx
contributes to a decrease in extracellular Ca levels [21].
Subsequently, the release of lysosomal phospholipases A
act upon the cell membrane. Free fatty acids – mainly 
arachidonic acid (AA) – are released. The AA metabo-
lizes to eicosanoids, (by lipo-oxygenase to leukotrienes
and by cyclo-oxygenase to prostaglandin D, E, F, trom-
boxane, and prostacyclin) [25, 27, 28, 29]. This leads 
to tissue edema and inhibits membrane-dependant 
Na-K-ATPase, which is responsible for blood flow, clot-
ting mechanisms, and radical reactions [13, 14, 25, 26,
30]. This, in turn, with the help of the Ca influx, induces

vasospasm and ischemia [31]. Likewise, protein kinase
C activation promotes neurofilament degradation which
contributes lipid peroxidation that can be assessed by
MDA levels [22, 23, 24]. Besides uncoupling of oxida-
tive phosphorylation, anaerobic glycolysis, the ATP
stores’ depletion, and hypoxia facilitate the formation of
ischemia [32, 33, 34] (Fig. 5).

The spinal cord and brain are particularly vulnerable
to free radical oxidation following hypoxic or traumatic
insults because of their high lipid content [13] and poor
iron-binding capacity. Accumulating knowledge about
triggering mechanisms and the contributing factors and
biochemicals on each step of the algorithm in SCI pro-
moted the use of many substances in this field. Anti-in-
flammatory [12, 35] and/or immunosuppressive drugs
[36], phospholipase inhibitors, cyclo-oxygenase/lipoxy-
genase/mixed lipoxygenase-cyclo-oxygenase inhibitors,
thromboxane synthetase, thromboxane, and leucotriene
receptor antagonists [27, 28], ROS scavengers/antioxi-
dants [32, 33], the biological enzymes [13, 24, 28, 32,
33, 34, 35], vitamins [24, 34, 37, 38], selenium cation
[24], ubiquinole [38], glucose depletion [39], spinal cord
blood flow restoration [40, 41], hyperbaric oxygen thera-
pies [42], hypothermia [43, 44], epidural cord cooling
[43, 45], metal chelators, protein synthesis inhibitor [46],
Mg [47], melatonin [48] or α-lipoic acid [49], calpain in-
hibitor [50], adenosine [51], opiate antagonists [28, 52,
53, 54], and calcium channel antagonists [55, 56, 57]
have been tried before and were found to be promising.
Despite the high concentrations of monoamines on SCI
[18], the use of α- and β-catecholamine antagonists has
not gained much credit in clinical practice [58].

Finally, NMDA receptor antagonists (-glicin site [59,
60] -competitive [20, 60, 61, 62] or -noncompetitive [62,
63]) have been widely accepted in clinical use to prevent

Fig. 3 Basal (G1) and 10, 30, and 120 min SOD levels for each
study group (G2–G6) represented by box plot graphic

Fig. 4 Basal (G1) and 10, 30, and 120 min GSH-Px levels for
each study group (G2–G6) represented by box plot graphic
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the detrimental effects of excitatory amino acids. They
are known to have anticonvulsant [60], muscle relaxant
and anxiolytic [61], neuroprotective [62, 63], and cyto-
toxic antiedema effects [15, 64]. The morphinan deriva-
tives [65, 66, 67], particularly dextrorotatory morphinans
DM (D-3-methoxy-N-methyl morphinan) and its active
metabolite dextrorphan [65, 68, 69], have the unique
ability to block multiple major routes of Ca entry into
neurons due to both NDMA-antagonist [46, 65, 66, 68,
70, 71] and voltage-gated Ca influx-inhibiting effects.
They bind at the PCP/sigma-opiate receptor site and may
underlie the similar subjective effects of the dissociative
anesthetics and psychomimetic opiates [65, 66, 72]. Dex-
tromethorphan is a water-soluble semisynthetic morphi-
nan derivative and possesses antitussive, antiepileptic,
antineurotoxic effects against p-chloroamphetamine but
is devoid of opioid action [67, 68, 73]. It protects the
brain tissue from edema and ischemia and provides neu-
rologic recovery [34]. Kato used the active metabolite D
to protect spinal cord [46]. Therefore, with the use of the
NMDA antagonist dextromethorphan, we aimed to pre-
vent the initiation of many pathophysiological processes
of the central nervous system or lipid peroxidation by
providing the blockade of Ca-2 channels, and we com-
pared its effects with MP, a very well-known neuropro-
tective agent in SCI.

The use of corticosteroids has been based on a num-
ber of theoretical justifications such as their antioxidant
and antiedemic properties or their ability to stabilize 

lysosomal membranes [19]. Hydrocortisone is ineffec-
tive as an inhibitor of lipid peroxidation even at exceed-
ingly high concentrations [74]. Dexamethasone, a ste-
roid widely used in neurosurgery, also possesses lipid
antioxidation activity [19, 75], but it is slightly less 
effective than MP and P [19, 52, 74, 76, 77]. Methyl-
prednisolone obviates the early rise of spinal cord blood
flow [78, 79, 80], prevents post-traumatic spinal cord
ischemia [78, 81] and neurofilament degeneration, im-
proves energy metabolism [33], restores extracellular
calcium [80], improves nerve impulse conduction (re-
ducing excitatory amino acid release) [80, 82, 83] and
enhances the activity of NaK-ATPase [82], blocks the
synthesis of prostaglandin – F2α, thromboxane – A2,
ROS and the release of free fatty acids [14, 72, 74], and
in turn inhibits tissue lipid peroxidation [34, 37, 74, 84]
(at 30 min to 1 h [24, 78, 84]). It reduces lesion volumes
in contused cord and suppresses vasogenic edema with
inflammatory response [35, 85]. The recent develop-
ment of the 21-aminosteroids (lazaroids) – newer meth-
ylprednisolone esters – may attenuate ischemic endothe-
lial cell injury or activation of leukocytes and reduce
MDA levels without any glucocorticoid activity [33, 37,
74, 76, 77, 86].

The route and the dose

In focal cerebral ischemia, an i.p. dose of 30 mg/kg of
DM reduced infarct volume by 65% [87]. The bioavail-
ability of DM is 1.3-fold lower and the formation of

Fig. 5 Secondary injury mechanisms in SCI



263

dextrorphan and other metabolites are threefold greater
after i.p. injection of 30 mg/kg of DM. Neurologic re-
covery was observed when compared to the subcutane-
ous (s.c.) route [88]. Moreover, s.c. 30 mg/kg DM has
PCP-like effects [72, 88]. If given i.p., the PCP-like dis-
criminative effect of dextromethorphan is most likely
controlled by its metabolic conversion to dextrorphan
[88]. Therefore we chose the intraperitoneal route to give
DM at a dose of 30 mg/kg. The study of Fossati et al.
[68] on DM pharmacokinetics has shown DM to have
the highest concentrations at 60 min and 120 min, which
then diminished gradually when given at 30 mg/kg to
rabbits. Our study supports their finding, since DM was
found to be relatively effective at 120 min after SCI.

Neuroprotective [19, 74, 85] doses of MP greatly ex-
ceed those required for glucocorticoid receptor activation
and are close to doses that inhibit lipid peroxidation in
SCI [74, 82, 84]. Therefore, the effects are probably un-
related to its glucocorticoid receptor-mediated activity
[85]. The optimal i.v. dose of MP to achieve these 
actions is found to be 30 mg/kg [81, 82, 85]. It has 
been found less effective at the dose of 15 mg/kg or even
ineffective at 60 mg/kg [33, 74, 78]. We administered
MP at 30 mg/kg.

Different experimental trauma models are employed
for the study of disorders in acute SCI [89]. A standard
trauma may not be accomplished on the cord since the
area of the weight contact is quite variable in the weight-
drop method and compression with a contrast weight for
a definite time. We used the compression method by hor-
izontally applied clips as described by Rivlin and Tator
to achieve more standardized trauma [5]. In gray matter,
5 min of compression injury resulted in a sixfold in-
crease in total free fatty acids (threefold in white matter)
and a 20-fold increase in arachidonic acid (AA) levels
over controls or laminectomized animals [25]. The rea-
son for our choice of rats is that they are easily available,
resistant to long-standing anesthesia, and have vascular-
ization similar to that of humans [90, 91].

Among the outcome measures used in previous stud-
ies, e.g., blood flow [58], somatosensory evoked re-
sponses [47, 56], histology [46, 50, 63], and function
[28, 55], we used the TBA reaction with MDA [6, 92]
and erythrocyte SOD and GSH-Px activity level mea-
surements [1, 10, 11, 93, 94, 95, 96] to monitor metabol-
ic changes [32, 33, 49]. Malonyldialdehyde, formed
from the breakdown of polyunsaturated fatty acids,
serves as a convenient index for determining the extent
of the peroxidation reaction [7, 23, 92]. An antioxidant
defense system (enzymatic, nonenzymatic) prevents the
damage caused by ROS by reducing the local O2

– con-
centrations, sweeping away the catalytic metallic ions Fe
and Cu and ROS such as O2

– and H2O2, scavenging the
reaction initiators (OH, LO, LOO) and single O1, and
breaking down the chain reactions. Among the enzymat-
ic antioxidant systems are mitochondrial cytochrome ox-
idase, SOD, catalase, and GSH-Px [97]. Superoxide dis-
mutase is available in every O2

– metabolizing cell. It pre-
vents O2

– toxicity by catalyzing the superoxide anion

(O2
–) to H2O2 and molecular oxygen. The concentration

is higher in the intracellular compartment than the extra-
cellular part [3, 98, 99]. The second intracellular en-
zyme, GSH-Px, oxidizes glutathione to glutathione disul-
fide and reduces the hydroperoxides. It catalyzes the
turnover of peroxides to alcohols and prevents the oxida-
tion of membrane lipids and hemoglobin by peroxidases.
This reaction reduces the ratio of oxidative conversion of
hemoglobin to methemoglobin and prolongs the survival
of erythrocytes [3, 100]. Since these antioxidant en-
zymes play an important role in the antioxidant defense
mechanisms, many studies relating to their activity lev-
els have been done to monitor the extent of peroxidation
and tissue insult. Theoretically, when MDA levels are in-
creased, the blood levels of these enzymes may be ex-
pected to decrease. In experimental studies, when rats
were exposed to thinner inhalation, it was reported that
tissue MDA levels were increased whereas there was a
decrease in SOD activity levels [1]. This was valid in our
study for SOD levels. However, GSH-Px consumption
was rather indolent. Furthermore, a decrease in enzyme
levels in relation to the increase of MDA levels may not
be the case in every ischemic medium. A compensatory
mechanism may induce the enzyme elevations in chronic
cases [93, 94]. But at least it can be expected in acute
ischemic events, as was noted in our experimental study.
In this study, MP was found to be the most effective in
keeping MDA, SOD, and GSH-Px levels close to basal
levels. It was rather insufficient at 30 min, since MDA
and MDAb levels were elevated, whereas SOD and
GSH-Px levels were lower at this time. At this critical
point, supporting the effect of antilipid peroxidation with
another drug or increasing the MP dose may well be 
considered. Likewise, DM was not effective at 10 min 
as with 30 min or 120 min. It was rather effective 
at 120 min but not as much as with MP. This might 
have stemmed from the high plasma concentrations of
DM at 60–120 min as reported previously [68]. Surpris-
ingly, combined therapy was not superior to MP or DM
single therapies at any time point. This might have re-
sulted from a different type of competition between the
drugs.
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